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Abstract

Fused-filament-fabrication (FFF) technology is promising for the produc-
tion of fully embedded piezoresistive dynamic sensors. However, the lack
of experimental identification of the dynamic piezoresistivity limits the sci-
entific and applied progress. Dynamic piezoresistivity of 3D printed struc-
tures is hard to research due to: structural anisotropy and heterogenity,
the large number of process parameters in 3D printing, the nonhomogenous
electric/stress/strain fields. Additionally, the piezoresistivity can be depen-
dent on the frequency of the mechanical load and also on the temperature.
This research proposes an experimental method to identify the dynamic
piezoresistivity of unidirectionally printed specimens. The method is based
on the Bridgman model of piezoresistivity and is extended to the dynamic
conditions. With a single measurement, the stress in the specimen, the
initial resistivity and the piezoresistive coefficient in the frequency domain
are identified. The applicability of the method is experimentally tested on
three specimens with different orientations of the mechanical and electrical
loads. The identified piezoresistive coefficients identified using the proposed
method can be used in analytical and numerical models in embedded, FFF
dynamic sensors and similar applications.
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1. Introduction

In recent years the production of smart materials suitable for additive
manufacturing technologies has enabled the simultaneous production of mul-
tifunctional devices [1] e.g., actuators [2, 3], embedded electric circuits [4, 5]
and sensors [6, 7]. In the case of fused-filament-fabrication (FFF) technol-
ogy, piezoresistive materials can be used to create sensors. Piezoresistivity
denotes the phenomenon, whereby the electrical resistivity changes under
the influence of mechanical strain [8].

In 2012 Leigh et al. developed a conductive thermoplastic material
called “carbomorh” and showed that it is possible to use it with a 3D
printer to print parts able to sense strain [9]. Recent years have seen a
significant increase in the number of 3D printed sensors, e.g., Alsharari et
al. [10] researched graphene-based polylactic acid (PLA) and thermoplastic
polyurethane (TPU) composite-based sensors, Christ et al. [11] researched
TPU/multiwalled carbon nanotube (TPU/MWCNT) composite-based sen-
sors, Gooding et al. [12] researched embedded tensile-strain sensors, Kim et
al. researched a multiaxial force sensor [13], and Al-Rubaiai et al. researched
a strain sensor for sensing wind [14] .

In 2019 Maurizi et al. researched dynamic strain measurements of FFF
structures [15] and showed that it might be possible in the future to use FFF
technology to produce reliable dynamic sensors. However, the manufactur-
ing of reliable dynamic sensors is currently limited, since the influence on
the dynamic piezoresistivity of FFF structures with applied loads in different
directions is not well researched.

The FFF structure has to be electrically conductive in order to exhibit
piezoresistive properties. Most of the materials used in the FFF process
are, however, thermoplastics, which are electrically non-conductive. Con-
ductivity is achieved by dispersing conductive particles in a non-conductive
matrix: the conductivity of polymer composites is highly dependent on the
volume ratio of the conductive particles, which is explained by the percola-
tion theory [16]. Other mechanisms affecting the conductivity are tunneling
and temperature effects [17]. In recent years the volume ratio of conduc-
tive parts was often researched, e.g., composites of ABS/carbon nanotubes
(CNT) [18], ABS/MWCNT [19], nylon 6/metal and high-density polyethy-
lene [20], polypropylene/carbon black [21] and TPU/MWCNT [11]. Also
investigated were the influences of the FFF process parameters on the elec-
trical resistivity, e.g., Tan et al. [20] researched the influence of the printing
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orientation, Hampel et al. [22] the layer height, nozzle temperature and
printing velocity, Zhang et al. [23] the layer thickness, raster width, and
air-gap, and Watschke et al. researched the orientation, velocity and ma-
terial flow [24]. In these studies a lower resistivity along the direction of the
deposited material was achieved in comparison to the transverse direction.
Furthermore, a 30-times-higher resistivity can be identified when poor elec-
trical contacts are applied to the specimen [24]. Tha applicability of FFF as
manufacturing technology for electric circuits and components was studied
by Flowers et al. [25].

On the other hand, piezoresistivity as a material property has rarely
been studied directly. While the piezoresistive behaviour of inkjet-printed
thin films [26] and isotropic nanocomposites [27] has already been examined
in terms of the tensor-based resistivity-strain relationship, the evaluation
of the piezoresistivity of the FFF structures was limited to the resistance-
change observations and gauge factors. For static and quasistatic FFF sen-
sors, the influence of the geometry of the sensing part was researched by
Gooding et al. [12], while Christ et al. [11] examined the influence of the
content of conductive particles in a non-conductive polymer and Dawoud
et al. [28] investigated the influence of raster gap and raster orientation
on the static piezoresistivity. Dawoud et al. applied a static tensile load
to a specimen and used a two-probe resistance measurement with different
configuration electrodes; depending on the configuration of the electrodes,
different piezoresistive properties were obtained, which indicates that elec-
tric boundary effects have an important impact on the piezoresistivity.

An important factor relating to the absence of dynamic piezoresistivity
research is the lack of methods for dynamic piezoresistivity identification.
Several difficulties arise when the piezoresistivity of FFF structures is iden-
tified e.g., the anisotropy, the heterogenity, the large number of 3D printing
process parameters, the difficulty with electrical contacts, the dependency
of the load frequency and finally the temperature dependence. Due to the
anisotropy and heterogenitiy it is difficult to simultaneously establish a ho-
mogenous electric and stress/strain field. To overcome the existing issues, a
new method is proposed, based on unidirectionally printed specimens that
can be used to estimate the dynamic piezoresistivity of FFF structures with
the mechanical load and electrical field established in the same direction.
Since many of the design principles of piezoresistive dynamic sensors are
based on the electric field and stress being parallel [8], the obtained coef-
ficients are widely applicable. Coefficients can be used in numerical and
analytical models and to estimate the effects of process parameters.

This manuscript is organized as follows: Sec. 2 gives the theoretical
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background on the theory of elasticity end electric conductivity, Sec. 3 in-
troduces the method for dynamic piezoresistivity identification, Sec. 4 gives
the background on the experimental research, Sec. 5 presents the experi-
mental results and, finally, Sec. 7 gives the conclusions.

2. Theoretical background

The large variety of possible raster patterns results in the local mi-
crostructural behaviour of FFF structures. However, effective homogeniesed
properties can be used to predict their macroscopical behaviour [29, 30],
especially when the infill densitiy is close to 100%. Ohm’s law for a ho-
mogenous anisotropic structure relates the electric field intensity E and the
electric current density J through the resistivity matrix ρ as [31]:

E1

E2

E3

 =

ρ11 ρ12 ρ13
ρ21 ρ22 ρ23
ρ31 ρ32 ρ33

 
J1
J2
J3

 (1)

or using the summation convention:

Ei = ρij Jj , i, j = 1, 2, 3 (2)

where the indices i, j represent the orthogonal basis vector directions e1,
e2 and e3. The piezoresistive behaviour is described using the Bridgman
piezoresistivity model [32]:

ρij = ρ0 ij + dρij = ρ0 ij

(
1 +

dρij
ρ0 ij

)
, i, j = 1, 2, 3. (3)

where ρ0 ij represents the initial resistivity when no mechanical load is ap-
plied to the specimen and dρij is the increment of the resistivity due to
the mechanical load. In general, the initial resistivity ρ0 ij is temperature
dependent. However, in this research a constant temperature is assumed.
The relative resistivity change dρij/ρ0 ij linearly depends on the strain εkl
as [33]:

dρij/ρ0 ij = ξijkl εkl, i, j, k, l = 1, 2, 3 (4)

where ξijkl represents the piezoresistive coefficient. Using Voigt-Kelvin no-
tation, which simplifies the two-subscript notation into a single-subscript
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notation [34]:

11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6 (5)

Eq. (4) simplifies to

dρi/ρ0 i = ξij εj , i, j = 1, ..., 6. (6)

Under the assumption of a linear elasticity hypothesis, the strain and stress
σj relationship is equal to [34]:

εi = sij σj , i, j = 1, ..., 6 (7)

where sij denotes the compliance coefficients. As a result, the relative resis-
tivity change can be written in terms of the stress:

dρi/ρ0 i = ξij sjk σk = πik σk, i, j, k = 1, ..., 6 (8)

where πik represents the piezoresistive coefficient relating the relative re-
sistivity change dρi/ρ0 i and the stress σk. When the structures are man-
ufactured with material being deposited in a single direction, as shown in
Fig. 1 a), the symmetry of the material properties in three orthogonal planes
is assumed (along the deposited material, and transverse in the horizontal
and vertical planes) [35, 36], resulting in orthotropic material properties:

π =



π11 π12 π13 0 0 0
π21 π22 π23 0 0 0
π31 π32 π33 0 0 0
0 0 0 π44 0 0
0 0 0 0 π55 0
0 0 0 0 0 π66

 , ρ =

ρ1 0 0
0 ρ2 0
0 0 ρ3

 . (9)

The article is focused on a special case, when the electric field intensity E,
the electric current density J and the stress σ are in the directions of the
material symmetry as shown in Figs. 1 b), c) and d). Ohm’s law and the
relative resistivity change for the case shown in Fig. 1 b) are:

E1 = ρ1 J1, (10)

dρ1
ρ0 1

= π11 σ1. (11)
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Ohm’s law and the relative resistivity change for the case shown in Fig. 1 c):

E2 = ρ2 J2, (12)

dρ2
ρ0 2

= π22 σ2 (13)

and for Fig. 1 d):

E3 = ρ3 J3, (14)

dρ3
ρ0 3

= π33 σ3. (15)

Equations (10) - (15) show that the piezoresistivity in material’s principle
directions π11, π22 and π33 can be identified by establishing the stress and
electric fields in the material’s principle directions.

J3E3

a)

b)

c)

d)

E1 σ1 J1

E2

σ2

J2

σ3

e1

e2

e3material
deposition
direction

Figure 1: a) Unidirectional FFF structure; Homogenised equivalent with b) electric field
instensity E, current density J and stress σ in the direction e1, c) E, J , and σ in the
direction e2 and d) E, J , and σ in the direction e3
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3. Method

3.1. Specimens

The specimen orientation with regard to the load cases shown in Figs. 1
b), c) d) are shown in Fig. 2 as O1, O2 and O3, respectively. The dimensions
of the specimens are l1 = 110 mm, l2 = 20 mm and l3 = 7 mm. A harmonic
mechanical excitation with no offset is applied to the specimens. Due to
the compressive phase of the excitation, buckling should be prevented. The
critical buckling load that should not be exceeded is approximately 290 N
(for a Young’s modulus of 2 GPa)

l2

l3

l1

O1

O2

O3

material
deposition
direction

1 b)

1 d)

1 c)

Figure 2: Specimen: arrows indicate mechanical load direction

3.2. Electrical contacts

The electrical contact preparation is shown in Fig. 3. In the first step,
the surface of the electrically conductive specimen is coated with a silver
paint [37] and left to dry. In the second step, a thin enamelled copper wire
is soldered to the conductive copper tape [38], which is then taped to the
specimen at the location of the silver paint. A relatively thin wire has to be
used, to prevent any significant contribution to the specimen’s dynamics.
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silver
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copper
tape
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solder
joint

step 2

step 1

Figure 3: Preparation of electrical contacts

3.3. Piezoresistivity identification

Fig. 4 shows the proposed experimental setup for the identification of
the piezoresistivity. The specimen is mechanically fixed on one side, while
it is able to move in the axial direction on the other side. In this section, if
not otherwise noted, the orientation of specimen O1 is assumed, see Fig. 2.
Dimension lC = 30 mm denotes the clamping length.

e3

e2

F (t)

ẍ(t)

l 3

l2

e2

e3

e1

electrical contact

e1

V

V1 V2V3 V4

+−

lE

l1

lC

V

σ

E

J

lC

i

RS

Figure 4: Schematic diagram of proposed experimental setup

For the identification of the electrical resistivity, the four-probe method [39]
is used to measure the specimen’s resistance. The electrical contacts have
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the electric potentials V1, V2, V3 and V4. The contacts V3 and V4 are lE = 10
mm apart and are assumed to be in the electrical and mechanical homoge-
neous zone without boundary effects (e.g., due to clamping, electrodes, for
details see Appendix A). The supply circuit is connected to the contacts
V1 and V2, which are l1 apart. The electrical current through the specimen
i is determined through the voltage drop across the shunt resistor uS with
resistance RS, see Fig. 4:

i =
uS
RS

. (16)

By measuring the voltage drop between the contacts V3 and V4, the
electrical resistance of the 3D printed structure between the contacts is de-
termined as:

R =
V3 − V4

i
=
uR
i
. (17)

Due to the geometrical relationship between the resistance R and the resis-
tivity ρ1 it follows that [40]:

ρ1 = R
(l2 + dl2) (l3 + dl3)

lE + dlE
=
uR
i

(l2 + dl2) (l3 + dl3)

lE + dlE
, (18)

where dl2, dl3, dlE denote the length changes of l2, l3 and lE due to the
applied load, respectively. Under a uniaxial stress assumption, the strain
equals:

ε1 =
dlE
lE
, ε2 =

dl2
l2

= −ν12 ε1, ε3 =
dl3
l3

= −ν13 ε1, (19)

and equation (18) simplifies to:

ρ1 = R
l2 l3
lE

(1− ν12 ε1) (1− ν13 ε1)
1 + ε1︸ ︷︷ ︸

geometrical changes

, (20)

where ν12 and ν13 denote the Poisson’s ratio relating the axial strain ε1 with
the transverse strain ε2 and ε3, respectively. The influence of the geometrical
changes in Eq. (20) are discussed in Appendix B.

This research is focused on the harmonic changes in the resistivity when
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a harmonic load F (t) is applied to the moving end, see Fig. 4:

F (t) = F̃ ei 2 π fexc t, (21)

where F̃ denotes the force amplitude, i is an imaginary number, π is the
number Pi, fexc is the excitation frequency in Hz and t is time. For a causal,
linear system, the harmonic force causes a harmonic displacement x1(t), a
stress σ1(t), strain ε1(t) and also a resistivity ρ1(t) in the axial direction.
The strain in the axial direction ε1(t) is estimated from the displacement
x1(t):

ε1(t) =
x1(t)

l1 − 2 lC
, (22)

and the Poisson’s ratios ν12 and ν13 (20) can be estimated from a static
tensile test or by simultaneous measurements of the transverse strain ε2(t)
and ε3(t). The measured resistivity ρ1 (3)(20):

ρ1(t) = ρ0 1 + dρ1(t). (23)

is related to the underlying resistivity coefficient via Eq. (11); however,
due to the assumed constant temperature, ρ0 1 is related to the mean value
ρ0 1 = Mean(ρ1) and the changes in resistivity dρ̃1 to the amplitude at the
excitation frequency fexc. The amplitude spectrum ρ̃1(f) is obtained by
transforming the resistivity ρ1(t) into the frequency domain using a Fourier
transform. The resistivity ρ0 1 and the resistivity change dρ̃1 are obtained
as:

ρ0 1 = ρ̃1(f = 0), (24)

dρ̃1 = ρ̃1(f = fexc). (25)

At the excitation frequency fexc, due to the harmonic response, the piezore-
sistivity coefficient π11 (11) can be related to the amplitude of the change in
resistivity ρ̃1(fexc), the amplitude in the mechanical stress σ̃(fexc) and the
initial resistivity ρ̃1(f = 0):

π11(fexc) =
ρ̃1(fexc)

ρ̃1(f = 0) σ̃(fexc)
. (26)
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The amplitude of the mechanical stress σ̃(fexc) is defined as, see Fig 2:

σ̃(fexc) =
F̃R(fexc)

l2 l3
, (27)

where F̃R(fexc) is the amplitude of the force in the specimen, which can be
related to the measured force amplitude F̃ (fexc):

F̃R(fexc) = F̃ (fexc)−m ˜̈x(fexc), (28)

where m is the moving mass and ¨̃x is the measured acceleration amplitude
of the moving mass. Further, the moving mass m is estimated as:

m = mC +mS

(
1− lC

l1

)
, (29)

where mC = 0.403 kg is the mass of the fixation clamps at one side and
mS ≈ 0.01 kg is the mass of the specimen. As a reasonable approximation,
in Eq. (29) the complete mass of the specimen except the clamped length
lC was assumed to be moving.

To summarize: based on the measured values F (t), ẍ(t), uS(t), uR(t),
the coefficient of piezoresistivity for the specimen orientation O1, i.e., π11
Eq (26), can be identified. The specimen orientations O2 and O3 can be
used for the identification of the piezoresistivity coeficients π22 and π33,
respectively. For the O2 and O3 orientations, the resistivity in Eq. (26)
changes as follows:

O2, π22 : ρ̃1 → ρ̃2 (30)

O3, π33 : ρ̃1 → ρ̃3 (31)

4. Experiment

4.1. Specimen preparation

Specimens with the orientations O1, O2 and O3 (Fig. 2) were 3D printed
with a PRUSA I3 MK3S. Two specimens for each orientation were manu-
factured, resulting in a total of 6 specimens. An electrically conductive
composite filament from Proto-pasta [41] with a diameter of 1.75 mm was
used. The conductive Proto-pasta filament consists of a non-conductive
PLA matrix and conductive carbon-black particles. Based on the studies of
Maurizi et al. [15] and Munasinge [42], a linear piezoresistive behaviour in
ε < 0.5 % is assummed. The printing parameters were layer height 0.15 mm,
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infill density 100%, printing temperature of the conductive PLA 225◦C, built
plate temperature 70◦C, line width 0.4 mm, lines as infill pattern.

4.2. Experimental setup

The experimental setup is shown in Fig. 5. The specimen is clamped
between one fixed clamp attached to the support structure and one clamp
attached to a LDS V555 eletrodynamical shaker. In order to electrically
insulate the specimen from the environment, a thin insulating tape at the
interface between the specimen and clamping was used. The acceleration
and force from Fig. 4 were measured with a PCB T333B30 accelerometer and
a PCB 218C charge force sensor, which were mounted between the shaker
and the moving clamp. With a force sensor the Brüel and Kjær Nexus 2692
charge pre-amplifier was used. The signal from the accelerometer and force
sensor were acquired using a National Instruments 9234 measuring card.

A constant voltage was supplied to the specimen using a HQ-Power
PS23023 adjustable DC power supply. The voltage drop across the current
shunt and specimen, see Fig.4, were acquired using a National Instruments
9215 measuring card.
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copper
wires

Figure 5: Experimental setup

4.3. Measurements

The specimen was supplied with a constant voltage and current of ap-
proximately 10 mA. The electrodynamic shaker excited the specimen with
a displacement amplitude of 40µm at selected frequencies (55 Hz, 110 Hz,
165 Hz and 220 Hz) for 30 s. The excitation frequencies were significantly
below the first natural frequency of the system, which was identified in
the range 500-550 Hz (depending on the specimen orientation). The dis-
placement amplitude of 40µm causes a normal strain of 0.08 %, which is
assumed to be in the linear region. When linearity cannot be assumed,
the piezoresistive coefficients at different displacement amplitudes have to
be determined to find the linear region. The identification of the dynamic
piezoresistivity (26) is based on the simultaneously measured force F (t),
acceleration ẍ(t), voltage drops uR(t) and uS(t). The voltage drops uR(t)
and uS(t) were used to determine the resistivity ρ(t) (20). Poisson’s ratios
ν12 = 0.37 and ν13 = 0.38 were determined for the O1 oriented specimen
using a static tensile test. Poisson’s ratio ν12 = ν13 = ν = 0.375 was used
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for the geometrical correction in Eq. (20).
The measured force F (t), acceleration ẍ(t) and resistivity ρ(t) were,

using a Fourier transform, transformed from the time to the frequency do-
main. A particular 30-s-long time-domain signal was, due to averaging,
divided into 30 non-overlapping segments of length 1 s (a Hanning window
was used). Python library SciPy [43] was used for signal processing. The re-
sulting amplitude complex spectra are F̃ (f), ˜̈x(f), ρ̃(f), see, e.g., Fig. 6 for
the O3-oriented specimen at fexc = 220 Hz excitation frequency. From the
amplitude spectra, complex amplitudes at the excitation frequency F̃ (fexc),
˜̈x(fexc), ρ̃(fexc) and static resistivity ρ̃(f = 0) were obtained to identify the
piezoresistive coefficient, see Fig. 6 and Eqs. (26), (27), (28).

5. Results

Time- and frequency-domain results for the specimen orientation O3 at
220 Hz harmonic excitation are shown in Fig. 6. The major findings from
the results are:

• Static resistivity ρ̃(f = 0) ≈ 34.3 Ohm cm is approximately three or-
ders of magnitude higher than the harmonic resistivity at the excita-
tion frequency ρ̃(fexc) which is further approximately three orders of
magnitude above the noise floor.

• Stress in the specimen σ̃(fexc) is based on the amplitude of the exci-
tation force F̃ (fexc) and acceleration ˜̈x(fexc). Force and acceleration
amplitudes are approximately five and four orders of magnitude above
the noise floor, respectively. Both are contaminated with electromag-
netic noise (especially at 100 Hz).

Similar results were obtained for other specimen orientations and excitation
frequencies.
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Figure 6: a) Measured time signals, b) complex amplitudes in frequency domain of speci-
men with orientation O3 at 220 Hz excitation frequency

In Tab. 1 the identified mean amplitudes at measured excitation frequen-
cies (55 Hz, 110 Hz, 165 Hz, 220 Hz) and the piezoresistive coefficient for O1,
O2, O3 specimen orientations are presented. The specimens exhibited a low
viscoelastic behaviour (phase shift of less than 3 ◦). Due to the low impact
on the final result (less than 1 %), absolute values with the appropriate sign
(+/-) are used for calculations of the results in Tab 1, instead of complex
amplitudes. Based on the results in Tab 1, the following observation were
made:

• Initial resistivity ρ0 = ρ̃(0) does not depend on the frequency with
ρ0 1 = 20.96±1.21 Ohm cm, ρ0 2 = 32.96±0.62 Ohm cm, ρ0 3 = 33.83±
1.08 Ohm cm.

• Amplitude of acceleration is constant at a certain frequency point and
negative, as the system is operating below the resonance frequency.

• Force F̃ (fexc) decrease with frequency.
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• The highest piezoresistive coefficient is exhibited by orientation O3
π33 = 3.54± 0.11 GPa−1, followed by O2 π22 = 2.30± 0.41 GPa−1 and
O1 π11 = 0.17± 0.05 GPa−1.

Table 1: Identified average amplitudes used for calculation of the piezoresistive coefficient
and identified piezoresistive coefficient for different specimen orientations and excitation
frequencies

orientation
f

specimen
ρ̃(0) ρ̃(fexc) F̃ (fexc) ˜̈x(fexc) π(fexc)

[Hz] [Ohm cm] [Ohm mm] [N] [m s2] [GPa−1]

O1

55
1 21.54 0.04 172.06 -4.81 0.15
2 20.20 0.05 173.95 -4.81 0.21

110
1 21.61 0.03 163.00 -19.18 0.13
2 20.45 0.04 163.70 -19.28 0.16

165
1 21.60 0.04 159.05 -43.02 0.15
2 20.34 0.05 159.60 -43.31 0.19

220
1 21.50 0.04 143.37 -76.06 0.16
2 20.47 0.05 145.10 -76.86 0.18

O2

55
1 32.84 1.04 175.90 -4.81 2.49
2 33.14 0.89 173.10 -4.81 2.15

110
1 32.43 1.02 164.21 -19.19 2.56
2 33.40 0.83 161.80 -19.28 2.04

165
1 32.70 1.03 159.87 -43.01 2.48
2 33.31 0.88 156.90 -43.31 2.12

220
1 32.76 1.02 144.12 -75.88 2.48
2 33.10 0.87 142.21 -76.86 2.10

O3

55
1 34.35 1.46 163.32 -4.81 3.61
2 33.05 1.40 165.01 -4.81 3.54

110
1 34.13 1.41 152.50 -19.18 3.60
2 33.43 1.38 155.00 -19.26 3.55

165
1 34.19 1.46 148.72 -43.02 3.58
2 33.39 1.42 150.76 -43.30 3.53

220
1 34.67 1.42 134.66 -76.06 3.43
2 33.43 1.41 137.51 -76.85 3.48

6. Discussion

Due to the lack of research, the piezoresistive coefficients π are hard to
compare to previous experiments; however, the initial resistivity ρ0 can be
compared to previous research, see Tab. 2. The results are in reasonable
agreement with the research of Watschke et al. [24] and Hampel et al. [22].
The resistivity in the deposition direction ρ0 1 in comparison with ρ0 2 and
ρ0 3 is smaller due to the additional resistivity of the adjacent traces for ρ0 2
and ρ0 3. Hampel et al. examined the increase of the resistivity due to the
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adjacent traces and found that it is the same for horizontal and vertical
(build-up) directions. This finding by Hampel et al. is similar to that
reported here (ρ0 2 ≈ ρ0 3).

Table 2: Initial resistivity comparison

Initial resistivity This Watschke Hampel
[Ω cm] research, Tab. 1 et al. [24] et al. [22]

ρ0 1 ≈20.96 6< ρ1 <16 4.94
ρ0 2 ≈32.96 11< ρ2 <24 /
ρ0 3 ≈33.83 / /

While there is no significant difference of the initial resistivity in the di-
rections ρ0 2 and ρ0 3, the piezoresistive coefficients π22 and π33 differ signifi-
cantly. This can be attributed to the different mechanical bonding strength
of the adjacent traces. Since the FFF parts are built layer by layer a lower
temperature field appears when the material is deposited in the vertical
direction due to the cooling of already-deposited material. A lower tem-
perature results in a lower bonding strength in the vertical direction, as
compared to the horizontal plane, see [44], [45]. Weaker mechanical bond-
ing could cause the conductive networks to break and form more easily,
resulting in a higher piezoresistive coefficient π33.

7. Conclusions

A method for the identification of the dynamic piezoresistive coefficients
of unidirectional FFF structures was proposed. The method is based on the
Bridgman model of piezoresistivity and is extended to harmonic mechanical
excitation. Three build orientations of the specimens were used to identify
the piezoresitive properties in three orthogonal directions. Based on the
simultaneous measurement of force, acceleration and voltage drops across
the specimen and the shunt resistor the dynamic piezoresistive coefficient
can be identified.

The method was successfully implemented on three orthogonally man-
ufactured specimens in the 55 Hz-220 Hz frequency range. Significantly dif-
ferent piezoresistive coefficients were identified: π11 = 0.17 ± 0.05 GPa−1,
π22 = 2.30 ± 0.41 GPa−1 and π33 = 3.54 ± 0.11 GPa−1 for the O1, O2
and O3 orientations, respectively. In the researched frequency range, the
piezoresistive coefficients were found to be constant.

The identified piezoresistive coefficients in different directions enable the
future numerical and analytical research on advance dynamic sensors with
an arbitrary spatial orientation of embedding.
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Appendix A. Effects of the finite length of the electrodes on the
identified resistivity

Electrical contacts with voltages V1 and V2 (see Fig. 5) are applied to the
l2-l3 faces. As a result, a homogenous electric field can be assumed in the
axial direction. In order to avoid the effects of clamping, the voltage drops
between the electrodes V3 and V4 are measured to determine the resistivity
in Sec. 3.3. However, the finite length of the electrodes V3, V4, can influence
the measured resistivity. To check whether the electrodes V3 and V4 have
a significant influence on the measurement, three resistivity measurements
on the O1 oriented specimen were performed. Figure A.7 shows the prepa-
ration of the specimen. In the first step, only the contacts V1 and V2 were
prepared, as described in 3.2 and shown in Fig. A.7 a). The resistivity ρM1

was determined from the voltage drop between V1 and V2

ρM1 =
V1 − V2

i

l2 l3
l1
. (A.1)

In the second step, the electrical contacts V3 and V4 were prepared, see
Fig. A.7 b). The resistivity ρM2 was determined from the voltage drop be-
tween V1 and V2 using Eq. (A.1). Lastly, the resistivity ρM3 was determined
from voltage drop between V3 and V4 as:

ρM3 =
V3 − V4

i

l2 l3
lE

. (A.2)

The measured resistivities were ρM1 = 21.9 Ohm cm, ρM2 = 21.8 Ohm cm
and ρM3 = 21.4 Ohm cm. Based on the results, the impact of the electrodes
is in the range of approximately 2% and was neglected in this study.
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Figure A.7: Specimen preparation for determination: a) ρM1, b) ρM2 and ρM3

Appendix B. The effects of the correction of geometrical changes
on the identified piezoresistivity

In Eq. (20) the resistivity is determined by taking into account the geo-
metrical changes:

g =
(1− ν12 ε1) (1− ν13 ε1)

1 + ε1
. (B.1)

The effect of neglecting the geometrical changes g is presented here on a
synthetic experiment. Assuming a harmonic stress σ(t) acting on a specimen
in the axial direction:

σ = σ̃ cos(2 π fexc t), (B.2)

causes, under the assumption of negligible viscoelastic behaviour, a harmonic
resistivity change dρ(t) and a strain in the axial direction ε(t):

dρ(t) = π σ̃ cos(2 π fexc t) = dρ̃(t) cos(2 π fexc t), (B.3)

ε(t) = s σ̃ cos(2 π fexc t) = ε̃ cos(2 π fexc t). (B.4)
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By introducing the ratio r between the resistivity change amplitude dρ̃ and
the strain amplitude ε̃

r =
dρ̃

ε̃
, (B.5)

and rearranging Eqs. (20), (23), (B.3), (B.4), resistivity not corrected for
geometrical changes h(t) is:

h(t) = R(t)
l2 l3
lE

=
[
ρ0 + r ε̃ cos(2 π fexc t)

] 1 + ε̃ cos(2 π fexc t)(
1− ν ε̃ cos(2 π fexc t)

)2 , (B.6)

where the Poisson’s ratios in different directions are assumed to be equal
ν = ν12 = ν13. When the geometrical changes are neglected, h(t) represents
the time signal used for the identification of the initial resistivity ρ0 I and
the amplitude of resistivity change dρ̃I. Index I denotes the identified quan-
tities. Transforming h(t) into the frequency-domain h̃(f) using a Fourier
transform, the initial resistivity and the resistivity change are determined
from Eqs. (24), (25) as:

ρ0 I = h̃(f = 0), (B.7)

dρ̃0 I = h̃(fexc). (B.8)

The synthetic function h(t) was generated from the parameters fexc = 55 Hz,
ρ0 = 0.1 Ωm, ε̃ = 10−3, ν = 0.25 and focusing the analysis on the interval
r ∈ (10−6, 104) Ω m. In this synthetic experiment, for different ratios r, the
amplitude of the resistivity change dρ̃I was identified. In Fig. B.8 a) the
identified increment dρ̃I normalised by the true increment dρ̃ is shown. For
low ratios, the geometrical changes predominantly cause a change of the
resistance. As a result, significantly higher resistivity increments are iden-
tified. When the ratio r increases, the resistivity change is the main cause
of the resistance change. Additionally, the parameters ε, ν and ρ0 were var-
ied. A negligible influence of the strain variations was observed. A slight
influence of the Poisson’s ratio ν variations and a significant influence of the
initial resistivity ρ0 variation were observed, see Fig. B.8 c) and b), respec-
tively. The synthetic experiment shows that the geometrical changes should
not be neglected, since a significant influence on the identified resistivity was
observed.
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Figure B.8: The influence of ratio r = dρ̃/ε̃ on the ratio between identified increment
of resistivity dρ̃I and true increment of resistivity dρ̃ when parameters a) fexc = 55 Hz,
ρ0 = 0.1 Ωm, ε̃ = 10−3, ν = 0.25, b) fexc = 55 Hz, ε̃ = 10−3, ν = 0.25, c) fexc = 55 Hz,
ρ0 = 0.1 Ωm, ε̃ = 10−3 are used
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